Aktualności


Sprawdzając pojęcie „ceramika” w encyklopedii można dowiedzieć się, że słowo to pochodzi z języka greckiego i jest pojęciem zbiorczym, oznaczającym wyroby z wypalanej gliny, takie jak terakota, kamionka, fajans, gres, porcelana, a także cegła. Przykładem największych artystycznych osiągnięć w ceramice są wazy greckie z okresu silnego rozkwitu, a także porcelana chińska i europejska.

Wysokowydajna ceramika techniczna mająca różnorodne zastosowania w przemyśle z tą definicją ma już niewiele wspólnego. Jest ona niezwykle czystym materiałem, otrzymywanym z naturalnych surowców za pomocą skomplikowanych procesów chemicznych. Wiele rodzajów zaawansowanej ceramiki technicznej zaskakuje ponadprzeciętnymi właściwościami, które są trudne do pogodzenia z klasycznym obrazem ceramiki.


Rys 1. Wirnik pompy


Wśród wszystkich tlenków, węglików i azotków, tlenek glinu zajmuje tu szczególne miejsce. Tlenek glinu jest ceramiką najbardziej rozpowszechnioną, o nieporównywalnych zasobach tego surowca. Boksyt aluminium jest jednym z najbardziej rozpowszechnionych składników w skorupie ziemskiej, jego zawartość w niej wynosi ok.  8%! Dlatego w przypadku tego typu ceramiki nie trzeba liczyć się z niedoborem zasobów naturalnych, jakkolwiek pozyskiwanie z surowego materiału  czystych proszków  tlenku glinu jest procesem energochłonnym i wymagającym dużych nakładów inwestycyjnych.


Rys 2. Generator ozonu do przemysłu półprzewodników


Właściwości materiału


Najważniejsze właściwości zaawansowanej ceramiki technicznej to:

  • odporność na tarcie
  • nadzwyczajna twardość ( 9 Mohs )
  • niska gęstość
  • bardzo dobra odporność na korozję względem kwasów i zasad
  • wysoka odporność na temperaturę do 1950 °C


Te niezwykle atrakcyjne właściwości ceramiki technicznej równoważone są jej wysoką ceną. Dlatego ceramikę techniczną należy stosować wszędzie tam, gdzie koszt inwestycji kompensowany jest poprzez korzyści płynące z jej zastosowania. Czasami może być niezbędna adaptacja całej konstrukcji pod ceramikę, co może stanowić dodatkowe wyzwanie dla projektanta. Dla samych producentów ceramiki technicznej urządzenia produkcyjne są niezwykle kapitałochłonne, dodatkowo opracowywanie i rozwój zaawansowanych materiałów ceramicznych wymaga dużych nakładów inwestycyjnych. Niezbędne w produkcji procesy spiekania ceramiki w temperaturze około 1800 °C są również niezwykle wymagające i energochłonne. Z kolei nadzwyczajna twardość i  odporność na ścieranie ceramiki sprawia, że jej obróbka wykańczająca po spiekaniu jest czasochłonna i wymaga dużego wysiłku oraz doświadczenia.


Rys 3. Obudowa kamery w dronach


Wyższa cena ceramiki technicznej jest uzasadniona wtedy, gdy środowisko pracy danego elementu konstrukcyjnego wymaga jednocześnie co najmniej dwóch szczególnych właściwości od zastosowanego materiału. Na przykład, w ceramicznych łożyskach ślizgowych wymagane są dobre właściwości ślizgowe oraz odporność na korozję przy jednoczesnym braku smarowania. Ewentualnie konieczna może być jeszcze izolacja elektryczna, bądź produkt nie może mieć kontaktu z metalami zawierającymi nikiel. W takich sytuacjach tańsze materiały osiągają granice swoich możliwości. Najbardziej efektywne wykorzystanie elementów konstrukcyjnych z ceramiki technicznej umożliwiają zastosowania o skrajnie złożonych wymaganiach.


Konstrukcja

Ze względu na wyjątkowe właściwości ceramiki technicznej, konstrukcja elementów z tego materiału różni się od konstrukcji tożsamych części wykonanych z innych materiałów. Tak jak konstrukcja mostu drewnianego różni się od konstrukcji mostu z betonu lub ze stali. W projektach technicznych  mostów uwzględnia się właściwości tworzyw i dostępność materiałów, czego efektem są ich różne kształty.

Producenci ceramiki technicznej współdziałają przy projektowaniu nowych elementów konstrukcyjnych dostosowanych do indywidualnych potrzeb klientów. Dlatego technolodzy i inżynierowie do spraw aplikacji w przemyśle ceramicznym muszą często intensywnie współpracować z odbiorcami aby spełnić ich wymagania w stosunku do danego elementu konstrukcyjnego. W celu skutecznego zaprojektowania nowej części konstrukcyjnej należy z jednej strony szukać precyzyjnego dopasowania wymaganej funkcji z odpowiednimi właściwościami materiału, a z drugiej z technicznymi aspektami produkcji danego elementu. Dobór odpowiedniej metody produkcji ma często decydujące znaczenie i wywiera znaczący wpływ na ostateczny projekt części ceramicznej. Jeżeli w konstrukcji uwzględni się właściwości materiału oraz specyfikę dostępnych metod produkcji, można wykorzystać mocne strony ceramiki przy akceptowalnych kosztach.